Abstract
We show that, up to order type isomorphism, there is a unique crossing-minimal rectilinear drawing of K18. It is easily verified that this drawing does not contain any crossing-minimal drawing of K17. Therefore this settles, in the negative, the following question from Aichholzer and Krasser: is it true that, for every integer n ≥ 4, there exists a crossing-minimal drawing of Kn that contains a crossing-minimal drawing of Kn − 1?
Originalsprache | englisch |
---|---|
Seitenumfang | 29 |
Fachzeitschrift | Ars Mathematica Contemporanea |
Jahrgang | 24 |
Ausgabenummer | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2024 |
ASJC Scopus subject areas
- Theoretische Informatik
- Diskrete Mathematik und Kombinatorik
- Geometrie und Topologie
- Algebra und Zahlentheorie
Fields of Expertise
- Information, Communication & Computing