There is a unique crossing-minimal rectilinear drawing of K_18

Bernardo M. Ábrego, Silvia Fernández-Merchant, Oswin Aichholzer, Jesús Leaños, Gelasio Salazar

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We show that, up to order type isomorphism, there is a unique crossing-minimal rectilinear drawing of K18. It is easily verified that this drawing does not contain any crossing-minimal drawing of K17. Therefore this settles, in the negative, the following question from Aichholzer and Krasser: is it true that, for every integer n ≥ 4, there exists a crossing-minimal drawing of Kn that contains a crossing-minimal drawing of Kn − 1?
Originalspracheenglisch
Seitenumfang29
FachzeitschriftArs Mathematica Contemporanea
Jahrgang24
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2024

ASJC Scopus subject areas

  • Theoretische Informatik
  • Diskrete Mathematik und Kombinatorik
  • Geometrie und Topologie
  • Algebra und Zahlentheorie

Fields of Expertise

  • Information, Communication & Computing

Dieses zitieren