Projekte pro Jahr
Abstract
The creation of prosodic annotations is one of the most diffi-cult and time-consuming aspects of creating a speech database. Generally, only the speech signal and manually created tran-scriptions are available in an early resource development stage.This paper presents a tool for annotating prosodic prominenceat the word level, using exclusively acoustic features (96 f0-,intensity- and durational features). The best performance forseparating prominent from non-prominent words in Austrianread speech was reached with a decision tree with the abso-lute word duration as the only feature. For distinguishing moreprominence levels, a good performance was reached with a ran-dom forest model, similar to the best inter-annotator agreement.Furthermore, we analyzed in detail the feature ranking of therandom forest to give us insights into the relative importanceof the features contributing to prominence in Austrian German:Word duration>f0 range, RMS range. The specific findingsof this study will mainly be relevant for speech scientists andprosody researchers interested in German. Our methodologi-cal approach of analyzing prosodic prominence from a purelyacoustic perspective at the word-level will also be interestingfor researchers focusing on prosody in other languages.
Originalsprache | englisch |
---|---|
Titel | Proceedings of Speech Prosody 2020 |
Untertitel | 10th International Conference on Speech Prosody 2020 |
Erscheinungsort | Tokyo, Japan |
Seiten | 1000 - 1004 |
Seitenumfang | 5 |
Band | 2020-May |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Jan. 2020 |
Veranstaltung | 10th International Conference on Speech Prosody - virtuell, Keine Angaben Dauer: 24 Mai 2020 → 28 Mai 2020 |
Publikationsreihe
Name | Proceedings of the International Conference on Speech Prosody |
---|---|
ISSN (Print) | 2333-2042 |
Konferenz
Konferenz | 10th International Conference on Speech Prosody |
---|---|
Kurztitel | Speech Prosody 2020 |
Land/Gebiet | Keine Angaben |
Ort | virtuell |
Zeitraum | 24/05/20 → 28/05/20 |
ASJC Scopus subject areas
- Sprache und Linguistik
- Linguistik und Sprache
-
FWF - Spontansprache - Cross-layer Sprachmodelle für Spontansprache
1/11/19 → 31/10/24
Projekt: Forschungsprojekt
-
FWF - CLCS_2 - Cross-layer Prosodie Modelle für Spontansprache
1/10/18 → 30/11/21
Projekt: Forschungsprojekt
Auszeichnungen
Presseberichte
-
Wie der Mensch von der Maschine lernt
Barbara Schuppler & Gernot Kubin
25/09/19
1 eigener Medienbeitrag
Presse/Medien: Presse / Medien