Tuning the morphology of sputter-deposited platinum catalyst: From compact layers to dispersed nanoparticles

Athira Lekshmi Mohandas Sandhya, Pavel Pleskunov, Marco Bogar, Xianxian Xie, Philipp Aldo Wieser, Martin Orság, Thu Ngan Dinhová, Milan Dopita, Rodolfo Taccani, Heinz Amenitsch, Andrei Choukourov, Iva Matolínová, Ivan Khalakhan*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

A comprehensive study on adjusting the morphology of sputter-deposited platinum was performed. Platinum was deposited under various Ar pressure ranging from 0.3 to 3.2 Pa using a conventional magnetron system as well as at 57 Pa using a gas aggregation cluster source integrated into the magnetron sputtering system. The morphology and structure of deposited layers were characterized with a broad portfolio of characterization techniques such as scanning electron microscopy, transmission electron microscopy, grazing incidence small angle X-ray scattering and X-ray diffraction. The results revealed a continuous evolution of the Pt layer morphology from a thin-film-like layer of tightly packed Pt nanoparticles to a deposit composed of dispersed particles of 5-7 nm in size as the Ar pressure increased. The electrochemically active surface area of deposited Pt, as calculated from cyclic voltammograms, increased with deposition pressure from 11.7 m2·gPt−1 to 22.3 m2·gPt−1 and 24 m2·gPt−1 for Pt deposited at 0.3, 3.2 and 57 Pa, respectively. This increase in active sites was reflected in a significant improvement in the mass activity of platinum exemplary confirmed using a methanol electrooxidation reaction.

Originalspracheenglisch
Aufsatznummer103079
FachzeitschriftSurfaces and Interfaces
Jahrgang40
DOIs
PublikationsstatusVeröffentlicht - Aug. 2023

ASJC Scopus subject areas

  • Oberflächen, Beschichtungen und Folien

Fingerprint

Untersuchen Sie die Forschungsthemen von „Tuning the morphology of sputter-deposited platinum catalyst: From compact layers to dispersed nanoparticles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren