Aktivitäten pro Jahr
Abstract
In landmark localization, due to ambiguities in defining their exact position, landmark annotations may suffer from both large inter- and intra-observer variabilites, which result in uncertain annotations. Therefore, predicting a single coordinate for a landmark is not sufficient for modeling the distribution of possible landmark locations. We propose to learn the Gaussian covariances of target heatmaps, such that covariances for pointed heatmaps correspond to more certain landmarks and covariances for flat heatmaps to more uncertain or ambiguous landmarks. By fitting Gaussian functions to the predicted heatmaps, our method is able to obtain landmark location distributions, which model location uncertainties. We show on a dataset of left hand radiographs and on a dataset of lateral cephalograms that the predicted uncertainties correlate with the landmark error, as well as inter-observer variabilities
Originalsprache | englisch |
---|---|
Titel | Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis |
Untertitel | Second International Workshop, UNSURE 2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings |
Erscheinungsort | Cham |
Herausgeber (Verlag) | Springer |
Seiten | 42-51 |
Seitenumfang | 10 |
ISBN (elektronisch) | 978-3-030-60365-6 |
ISBN (Print) | 978-3-030-60364-9 |
DOIs | |
Publikationsstatus | Veröffentlicht - 8 Okt. 2020 |
Veranstaltung | 2nd International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging: UNSURE 2020 - Virtual, Lima, Peru Dauer: 8 Okt. 2020 → … |
Publikationsreihe
Name | Lecture Notes in Computer Science |
---|---|
Band | 12443 |
Workshop
Workshop | 2nd International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging |
---|---|
Land/Gebiet | Peru |
Ort | Virtual, Lima |
Zeitraum | 8/10/20 → … |
ASJC Scopus subject areas
- Theoretische Informatik
- Allgemeine Computerwissenschaft
Fingerprint
Untersuchen Sie die Forschungsthemen von „Uncertainty Estimation in Landmark Localization Based on Gaussian Heatmaps“. Zusammen bilden sie einen einzigartigen Fingerprint.Aktivitäten
- 1 Vortrag bei Workshop, Seminar oder Kurs
-
Uncertainty Estimation in Landmark Localization based on Gaussian Heatmaps
Payer, C. (Redner/in)
8 Okt. 2020Aktivität: Vortrag oder Präsentation › Vortrag bei Workshop, Seminar oder Kurs › Science to science