14_FFG_KoRe - Cost optimisation potential for electric motorcycle energy storage systems by allowing deformations during crash load cases

Project: Research project

Project Details

Description

Currently electric energy storage systems (EES) of electric motorcycles are designed in a way, that mechanical loading (crash loading, impact loads in driving cycles, ...) doesnt lead to any cell deformation, to prevent a thermal runaway of battery cells under any circumstances, which can, in worst case scenarios, lead to fire or even explosion. However, since battery cells, used in motorcycles today, do allow for a certain amount of deformation, without dangerous damage, depending on the direction of loading, EES could be designed significantly less robust and thus lighter in weight and less cost intense. Due to this fact, within this research project, the theoretical cost and weight saving potential dependant of permitted uncritical deformations shall be determined. For this purpose a parametric finite element model of a generic EES concept will be optimised, using optimisation tools for explicit finite element methods, with respect to a complex target function (manufacturing costs, material costs, ) for a well-known load spectrum. Results from this project are important informations for strategic decisions whether future EES-concepts for all different kinds of motorcycle classes shall be designed in a way to allow a certain uncritical amount of deformation in order to safe weight and costs while maintaining a sufficient safety margin.
StatusFinished
Effective start/end date1/01/1531/12/16

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.