Incorporation of a 3D Energy-Based Vector Hysteresis Model into the Finite Element Method using a Reduced Scalar Potential Formulation

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, the reduced scalar potential is utilized to derive a finite element formulation capable of handling hysteretic nonlinear material laws. The Fréchet derivative is employed to deduce a quasi-Newton scheme in the weak form for solving the nonlinear partial differential equation that describes the magnetostatic field. Methods for evaluating the Jacobian are presented, and their performance is compared on a 3-D domain under uniaxial and rotational excitation. The numerical results demonstrate the necessity of a flexible approximation to overcome the non-uniqueness of the Jacobian at reversal points, which naturally occurs in hysteresis loops. Consequently, an exact or excessively localized evaluation would give rise to difficulties in states of material magnetization characterized by these reversal points.

Original languageEnglish
Article number7300708
Pages (from-to)1-8
Number of pages8
JournalIEEE Transactions on Magnetics
Volume60
Issue number6
DOIs
Publication statusPublished - 1 Jun 2024

Keywords

  • Energy-based vector hysteresis
  • Finite element analysis
  • finite element method
  • Jacobian matrices
  • line search
  • Magnetic domains
  • Magnetic hysteresis
  • Mathematical models
  • Newton method
  • quasi-Newton scheme
  • Vectors
  • finite element method (FEM)

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Incorporation of a 3D Energy-Based Vector Hysteresis Model into the Finite Element Method using a Reduced Scalar Potential Formulation'. Together they form a unique fingerprint.

Cite this