Large work function reduction by adsorption of a molecule with a negative electron affinity: Pyridine on ZnO (101̄0)

Oliver T. Hofmann, Jan Christoph Deinert, Yong Xu, Patrick Rinke, Julia Stähler, Martin Wolf, Matthias Scheffler

Research output: Contribution to journalArticlepeer-review


Using thermal desorption and photoelectron spectroscopy to study the adsorption of pyridine on ZnO(101̄0), we find that the work function is significantly reduced from 4.5 eV for the bare ZnO surface to 1.6 eV for one monolayer of adsorbed pyridine. Further insight into the interface morphology and binding mechanism is obtained using density functional theory. Although semilocal density functional theory provides unsatisfactory total work functions, excellent agreement of the work function changes is achieved for all coverages. In a closed monolayer, pyridine is found to bind to every second surface Zn atom. The strong polarity of the Zn-pyridine bond and the molecular dipole moment act cooperatively, leading to the observed strong work function reduction. Based on simple alignment considerations, we illustrate that even larger work function modifications should be achievable using molecules with negative electron affinity. We expect the application of such molecules to significantly reduce the electron injection barriers at ZnO/organic heterostructures.

Original languageEnglish
Article number174701
JournalThe Journal of Chemical Physics
Issue number17
Publication statusPublished - 7 Nov 2013
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this