TY - JOUR
T1 - On the Refinement of Spreadsheet Smells by means of Structure Information
AU - Koch, Patrick
AU - Hofer, Birgit Gertraud
AU - Wotawa, Franz
PY - 2019
Y1 - 2019
N2 - Spreadsheet users are often unaware of the risks imposed by poorly designed spreadsheets. One way to assess spreadsheet quality is to detect smells which attempt to identify parts of spreadsheets that are hard to comprehend or maintain and which are more likely to be the root source of bugs. Unfortunately, current spreadsheet smell detection techniques suffer from a number of drawbacks that lead to incorrect or redundant smell reports. For example, the same quality issue is often reported for every copy of a cell, which may overwhelm users. To deal with these issues, we propose to refine spreadsheet smells by exploiting inferred structural information for smell detection. We therefore first provide a detailed description of our static analysis approach to infer clusters and blocks of related cells. We then elaborate on how to improve existing smells by providing three example refinements of existing smells that incorporate information about cell groups and computation blocks. Furthermore, we propose three novel smell detection techniques that make use of the inferred spreadsheet structures. Empirical evaluation of the proposed techniques suggests that the refinements successfully reduce the number of incorrectly and redundantly reported smells, and novel deficits are revealed by the newly introduced smells.
AB - Spreadsheet users are often unaware of the risks imposed by poorly designed spreadsheets. One way to assess spreadsheet quality is to detect smells which attempt to identify parts of spreadsheets that are hard to comprehend or maintain and which are more likely to be the root source of bugs. Unfortunately, current spreadsheet smell detection techniques suffer from a number of drawbacks that lead to incorrect or redundant smell reports. For example, the same quality issue is often reported for every copy of a cell, which may overwhelm users. To deal with these issues, we propose to refine spreadsheet smells by exploiting inferred structural information for smell detection. We therefore first provide a detailed description of our static analysis approach to infer clusters and blocks of related cells. We then elaborate on how to improve existing smells by providing three example refinements of existing smells that incorporate information about cell groups and computation blocks. Furthermore, we propose three novel smell detection techniques that make use of the inferred spreadsheet structures. Empirical evaluation of the proposed techniques suggests that the refinements successfully reduce the number of incorrectly and redundantly reported smells, and novel deficits are revealed by the newly introduced smells.
U2 - 10.1016/j.jss.2018.09.092
DO - 10.1016/j.jss.2018.09.092
M3 - Article
SN - 0164-1212
VL - 147
SP - 64
EP - 85
JO - Journal of Systems and Software
JF - Journal of Systems and Software
ER -