Reactive cellulose-​based thin films - a concept for multifunctional polysaccharide surfaces

Thomas Elschner, David Reishofer, Rupert Kargl, Thomas Heinze, Karin Stana Kleinschek

Research output: Contribution to journalArticlepeer-review

Abstract

Reactive coatings of hydroxyethyl cellulose furoate in the form of thin films, suitable for the covalent immobilization of functional molecules, were developed and characterized in this work. The furoate derivatives were synthesized under homogeneous conditions by esterification of hydroxyethyl cellulose with 2-furoic acid. Reactive platform layers of these furoates were obtained by chemical
surface modification of spin coated thin films with N,N0 -carbonyldiimidazole. This chemistry allowed the covalent immobilization of functional molecules bearing primary and secondary amines on the films. The degree of substitution of the furoate thin films and their amino functionalized counterparts was
determined gravimetrically by a quartz crystal microbalance (QCM-D) and correlated with infrared and X-ray photoelectron spectroscopy and zeta-potential measurements. Scanning electron- and atomic force microscopy showed changes in the morphologies that were influenced by the chemical reactions
on the surface. The concept presented can be seen as a versatile method for immobilizing aminecontaining (bio-)molecules to polysaccharide surfaces with the furoates having the potential for further reversible cross-linking in Diels–Alder reactions.
Original languageEnglish
Pages (from-to)72378-72385
JournalRSC Advances
Volume6
DOIs
Publication statusPublished - 2016

Fingerprint

Dive into the research topics of 'Reactive cellulose-​based thin films - a concept for multifunctional polysaccharide surfaces'. Together they form a unique fingerprint.

Cite this