Structural Disorder in Li6PS5I Speeds 7Li Nuclear Spin Recovery and Slows down 31P Relaxation-Implications for Translational and Rotational Jumps as Seen by Nuclear Magnetic Resonance

M. Brinek, C. Hiebl, K. Hogrefe, I. Hanghofer, H. M.R. Wilkening*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Lithium-thiophosphates have attracted great attention as they offer a rich playground to develop tailor-made solid electrolytes for clean energy storage systems. Here, we used poorly conducting Li6PS5I, which can be converted into a fast ion conductor by high-energy ball-milling to understand the fundamental guidelines that enable the Li+ ions to quickly diffuse through a polarizable but distorted matrix. In stark contrast to well-crystalline Li6PS5I (10-6 S cm-1), the ionic conductivity of its defect-rich nanostructured analog touches almost the mS cm-1 regime. Most likely, this immense enhancement originates from site disorder and polyhedral distortions introduced during mechanical treatment. We used the spin probes 7Li and 31P to monitor nuclear spin relaxation that is directly induced by Li+ translational and/or PS43- rotational motions. Compared to the ordered form, 7Li spin-lattice relaxation (SLR) in nano-Li6PS5I reveals an additional ultrafast process that is governed by activation energy as low as 160 meV. Presumably, this new relaxation peak, appearing at Tmax = 281 K, reflects extremely rapid Li hopping processes with a jump rate in the order of 109 s-1 at Tmax. Thus, the thiophosphate transforms from a poor electrolyte with island-like local diffusivity to a fast ion conductor with 3D cross-linked diffusion routes enabling long-range transport. On the other hand, the original 31P nuclear magnetic resonance (NMR) SLR rate peak, pointing to an effective 31P-31P spin relaxation source in ordered Li6PS5I, is either absent for the distorted form or shifts toward much higher temperatures. Assuming the 31P NMR peak as being a result of PS43- rotational jump processes, NMR unveils that disorder significantly slows down anion dynamics. The latter finding might also have broader implications and sheds light on the vital question how rotational dynamics are to be manipulated to effectively enhance Li+ cation transport.

Original languageEnglish
Pages (from-to)22934-22940
Number of pages7
JournalThe Journal of Physical Chemistry C
Issue number42
Publication statusPublished - 22 Oct 2020

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


  • NAWI Graz

Cite this