The influence of thickness on the tensile strength of finnish birch veneers under varying load angles

Maximilian Pramreiter*, Alexander Stadlmann, Christian Huber, Johannes Konnerth, Peter Halbauer, Georg Baumann, Ulrich Müller

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The development of high-performance, veneer-based wood composites is a topic of increasing importance due to the high design flexibility and the comparable mechanical performance to solid wood. Part of this improved mechanical performance can be contributed to the size effect present in wood. Based on previous findings in the literature, this size effect can be either strengthening or weakening. The presented study investigates the influence of thickness and load angle on the tensile strength and tensile stiffness of peeled veneers compared to thin sawn timber. Veneers with thicknesses of 0.5 ± 0.05 mm, 1.0 ± 0.05 mm and 1.5 ± 0.05 mm as well as sawn wood with thicknesses of 1.5 ± 0.1 mm, 3.0 ± 0.1 mm and 5.0 ± 0.1 mm were tested in tension under different load angles (0, 45 and 90 ). The results only partly confirm a size effect for strength parallel to the grain. The strength perpendicular to the grain increased significantly between 0.5 mm and 1.5 mm, with a significant decrease between 1.5 mm and 5.0 mm. The presence of lathe checks diminished the strength perpendicular to the grain of the veneers by about 70% compared to solid wood, partly overshadowing a possible strengthening effect. It was concluded that a transition from a strengthening to a weakening behaviour lies in the range of multiple millimetres, but further investigations are needed to quantify this zone more precisely. The presented results provide a useful basis for the development of veneer-based wood composites with a performance driven layer-thickness.

Original languageEnglish
Article number87
Pages (from-to)1-12
Number of pages12
Issue number1
Publication statusPublished - Jan 2021


  • Birch wood
  • Fibre load angle
  • Mechanical performance
  • Size effect
  • Veneers

ASJC Scopus subject areas

  • Forestry


Dive into the research topics of 'The influence of thickness on the tensile strength of finnish birch veneers under varying load angles'. Together they form a unique fingerprint.

Cite this