The Mott transition in the 5d1 compound Ba2NaOsO6: A DFT+DMFT study with PAW spinor projectors

Dario Fiore Mosca, Hermann Schnait, Lorenzo Celiberti, Markus Aichhorn, Cesare Franchini

Research output: Contribution to journalArticlepeer-review

Abstract

Spin–orbit coupling has been reported to be responsible for the insulating nature of the 5d 1 osmate double perovskite Ba 2NaOsO 6 (BNOO). However, whether spin–orbit coupling indeed drives the metal-to-insulator transition (MIT) in this compound is an open question. In this work we investigate the impact of relativistic effects on the electronic properties of BNOO via density functional theory plus dynamical mean-field theory calculations in the paramagnetic regime, where the insulating phase is experimentally observed. The correlated subspace is modeled with spinor projectors of the projector augmented wave method (PAW) employed in the Vienna Ab Initio Simulation Package (VASP), suitably interfaced with the TRIQS package. The inclusion of PAW spinor projectors in TRIQS enables the treatment of spin–orbit coupling effects fully ab-initio within the dynamical mean-field theory framework. In the present work, we show that spin–orbit coupling, although assisting the MIT in BNOO, is not the main driving force for its gapped spectra, placing this material in the Mott insulator regime. Relativistic effects primarily impact the correlated states’ character, excitations, and magnetic ground-state properties.

Original languageEnglish
Article number112764
JournalComputational Materials Science
Volume233
DOIs
Publication statusPublished - 30 Jan 2024

Keywords

  • DFT+DMFT
  • Double perovskite
  • Dynamical mean field theory
  • Strong spin–orbit coupling

ASJC Scopus subject areas

  • Mechanics of Materials
  • Computational Mathematics
  • General Physics and Astronomy
  • General Chemistry
  • General Materials Science
  • General Computer Science

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)
  • Theoretical

Cooperations

  • NAWI Graz

Fingerprint

Dive into the research topics of 'The Mott transition in the 5d1 compound Ba2NaOsO6: A DFT+DMFT study with PAW spinor projectors'. Together they form a unique fingerprint.

Cite this