Van der Waals Interaction Activated Strong Electronic Coupling at the Interface between Chloro Boron-Subphthalocyanine and Cu(111)

Shashank S. Harivyasi, Oliver T. Hofmann, Nahid Ilyas, Oliver L.A. Monti, Egbert Zojer

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, we investigate the interface between shuttlecock-shaped chloro boron-subphthalocyanine (ClB-SubPc) molecules and the Cu(111) surface. We highlight, how molecular planarization induced by van der Waals forces can fundamentally alter the interface properties, and how it can enable a particularly strong hybridization between molecular and metal states. In our simulations, we start from a situation in which we disregard van der Waals forces and then introduce them gradually by rescaling the interaction parameter, thereby "pulling" the molecule towards the surface. This reveals two adsorption regimes with significantly different adsorption distances, molecular conformations, and adsorbate-induced changes of the work function. Notably, the above-mentioned massive hybridization of electronic states, also observed in photoelectron spectroscopy, is obtained solely for one of the regimes. We show that this regime is accessible only as a consequence of the planarization of the molecular backbone resulting from the van der Waals attraction between the molecule and the surface. The results of this study indicate that for certain metal-molecule combinations unusually strong interfacial electronic interactions can be triggered by van der Waals forces creating a situation that goes beyond the usually described cases of physisorptive and chemisorptive interactions.

Original languageEnglish
Pages (from-to)14621-14630
JournalThe Journal of Physical Chemistry C
Volume122
Issue number6
DOIs
Publication statusPublished - 2018

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Dive into the research topics of 'Van der Waals Interaction Activated Strong Electronic Coupling at the Interface between Chloro Boron-Subphthalocyanine and Cu(111)'. Together they form a unique fingerprint.

Cite this