Vibration-based fingerprint algorithm for structural health monitoring of wind turbine blades

Theresa Loss*, Alexander Bergmann

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Monitoring the structural health of wind turbine blades is essential to increase energy capture and operational safety of turbines, and therewith enhance competitiveness of wind energy. With the current trends of designing blades ever longer, detailed knowledge of the vibrational characteristics at any point along the blade is desirable. In our approach, we monitor vibrations during operation of the turbine by wirelessly measuring accelerations on the outside of the blades. We propose an algorithm to extract so-called vibration-based fingerprints from those measurements, i.e., dominant vibrations such as eigenfrequencies and narrow-band noise. These fingerprints can then be used for subsequent analysis and visualisation, e.g., for comparing fingerprints across several sensor positions and for identifying vibrations as global or local properties. In this study, data were collected by sensors on two test turbines and fingerprints were successfully extracted for vibrations with both low and high operational variability. An analysis of sensors on the same blade indicates that fingerprints deviate for positions at large radial distance or at different blade sides and, hence, an evaluation with larger datasets of sensors at different positions is promising. In addition, the results show that distributed measurements on the blades are needed to gain a detailed understanding of blade vibrations and thereby reduce loads, increase energy harvesting and improve future blade design. In doing so, our method provides a tool for analysing vibrations with relation to environmental and operational variability in a comprehensive manner.

Original languageEnglish
Article number4294
JournalApplied Sciences
Volume11
Issue number9
DOIs
Publication statusPublished - 1 May 2021

Keywords

  • Structural health
  • Vibration monitoring
  • Wind turbines
  • Wireless sensors

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Vibration-based fingerprint algorithm for structural health monitoring of wind turbine blades'. Together they form a unique fingerprint.

Cite this