Abstract
The study of the well-known partition function p(n) counting the number of solutions to n= a1+ ⋯ + aℓ with integers 1 ≤ a1≤ ⋯ ≤ aℓ has a long history in number theory and combinatorics. In this paper, we study a variant, namely partitions of integers into n=⌊a1α⌋+⋯+⌊aℓα⌋ with 1 ≤ a1< ⋯ < aℓ and some fixed 0 < α< 1 . In particular, we prove a central limit theorem for the number of summands in such partitions, using the saddle-point method.
Originalsprache | englisch |
---|---|
Seiten (von - bis) | 149-173 |
Seitenumfang | 25 |
Fachzeitschrift | Monatshefte fur Mathematik |
Jahrgang | 203 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - Jan. 2024 |
ASJC Scopus subject areas
- Allgemeine Mathematik