Abstract
Stolarsky [Proc. Amer. Math. Soc. 41 (1973), 575–582] showed a beautiful relation that balances the sums of distances of points on the unit sphere and their spherical cap $\mathbb {L}_2$-discrepancy to give the distance integral of the uniform measure on the sphere which is a potential-theoretical quantity (Björck [Ark. Mat. 3 (1956), 255–269]). Read differently it expresses the worst-case numerical integration error for functions from the unit ball in a certain Hilbert space setting in terms of the $\mathbb {L}_2$-discrepancy and vice versa. In this note we give a simple proof of the invariance principle using reproducing kernel Hilbert spaces.
Originalsprache | englisch |
---|---|
Seiten (von - bis) | 2085-2096 |
Fachzeitschrift | Proceedings of the American Mathematical Society |
Jahrgang | 141 |
Ausgabenummer | 6 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2013 |
Fields of Expertise
- Information, Communication & Computing
Treatment code (Nähere Zuordnung)
- Basic - Fundamental (Grundlagenforschung)
- Application
- Theoretical