TY - JOUR
T1 - A superlinear lower bound on the number of 5-holes
AU - Aichholzer, Oswin
AU - Balko, Martin
AU - Hackl, Thomas
AU - Kyncl, Jan
AU - Parada, Irene
AU - Scheucher, Manfred
AU - Valtr, Pavel
AU - Vogtenhuber, Birgit
N1 - online
PY - 2019
Y1 - 2019
N2 - Let $P$ be a finite set of points in the plane in general position, that is, no three points of $P$ are on a common line. We say that a set $H$ of five points from $P$ is a $5$-hole in~$P$ if $H$ is the vertex set of a convex $5$-gon containing no other points of~$P$. For a positive integer $n$, let $h_5(n)$ be the minimum number of 5-holes among all sets of $n$ points in the plane in general position. Despite many efforts in the last 30 years, the best known asymptotic lower and upper bounds for $h_5(n)$ have been of order $n)$ and~$O(n^2)$, respectively. We show that $h_5(n) = n4/5n)$, obtaining the first superlinear lower bound on $h_5(n)$. The following structural result, which might be of independent interest, is a crucial step in the proof of this lower bound. If a finite set $P$ of points in the plane in general position is partitioned by a line $ into two subsets, each of size at least 5 and not in convex position, then $ intersects the convex hull of some 5-hole in~$P$. The proof of this result is computer-assisted.
AB - Let $P$ be a finite set of points in the plane in general position, that is, no three points of $P$ are on a common line. We say that a set $H$ of five points from $P$ is a $5$-hole in~$P$ if $H$ is the vertex set of a convex $5$-gon containing no other points of~$P$. For a positive integer $n$, let $h_5(n)$ be the minimum number of 5-holes among all sets of $n$ points in the plane in general position. Despite many efforts in the last 30 years, the best known asymptotic lower and upper bounds for $h_5(n)$ have been of order $n)$ and~$O(n^2)$, respectively. We show that $h_5(n) = n4/5n)$, obtaining the first superlinear lower bound on $h_5(n)$. The following structural result, which might be of independent interest, is a crucial step in the proof of this lower bound. If a finite set $P$ of points in the plane in general position is partitioned by a line $ into two subsets, each of size at least 5 and not in convex position, then $ intersects the convex hull of some 5-hole in~$P$. The proof of this result is computer-assisted.
UR - https://arxiv.org/abs/1703.05253
U2 - 10.1016/j.jcta.2020.105236
DO - 10.1016/j.jcta.2020.105236
M3 - Article
SN - 0097-3165
SP - 1
EP - 31
JO - Journal of Combinatorial Theory, Series A
JF - Journal of Combinatorial Theory, Series A
ER -