TY - JOUR
T1 - Reactive Extraction of Lactic Acid, Formic Acid and Acetic Acid from Aqueous Solutions with Tri-n-octylamine/1-Octanol/n-Undecane
AU - Mungma, Nuttakul
AU - Kienberger, Marlene
AU - Siebenhofer, Matthäus
PY - 2019
Y1 - 2019
N2 - The present work develops the basics for the isolation of lactic acid, acetic acid and formic acid from a single as well as a mixed feed stream, as is present, for example, in fermentation broth for lactic acid production. Modelling of the phase equilibria data is performed using the law of mass action and shows that the acids are extracted according to their pka value, where formic acid is preferably extracted in comparison to lactic and acetic acid. Back-extraction was performed by 1 M NaHCO3 solution and shows the same tendency regarding the pka value. Based on lactic acid, the solvent phase composition, consisting of tri-n-octylamine/1-octanol/n-undecane, was optimized in terms of the distribution coefficient. The data clearly indicate that, compared to physical extraction, mass transfer can be massively enhanced by reactive extraction. With increasing tri-n-octylamine and 1-octanol concentration, the equilibrium constant increases. However, even when mass transfer increases, tri-n-octylamine concentrations above 40 wt%, lead to third phase formation, which needs to be prevented for technical application. The presented data are the basis for the transfer to liquid membrane permeation, which enables the handling of emulsion tending systems.
AB - The present work develops the basics for the isolation of lactic acid, acetic acid and formic acid from a single as well as a mixed feed stream, as is present, for example, in fermentation broth for lactic acid production. Modelling of the phase equilibria data is performed using the law of mass action and shows that the acids are extracted according to their pka value, where formic acid is preferably extracted in comparison to lactic and acetic acid. Back-extraction was performed by 1 M NaHCO3 solution and shows the same tendency regarding the pka value. Based on lactic acid, the solvent phase composition, consisting of tri-n-octylamine/1-octanol/n-undecane, was optimized in terms of the distribution coefficient. The data clearly indicate that, compared to physical extraction, mass transfer can be massively enhanced by reactive extraction. With increasing tri-n-octylamine and 1-octanol concentration, the equilibrium constant increases. However, even when mass transfer increases, tri-n-octylamine concentrations above 40 wt%, lead to third phase formation, which needs to be prevented for technical application. The presented data are the basis for the transfer to liquid membrane permeation, which enables the handling of emulsion tending systems.
U2 - 10.3390/chemengineering3020043
DO - 10.3390/chemengineering3020043
M3 - Article
SN - 2305-7084
VL - 3
JO - ChemEngineering
JF - ChemEngineering
IS - 2
M1 - 43
ER -