Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures

Kamela Myrtollari, Elia Calderini, Daniel Kracher, Tobias Schöngaßner, Stela Galušić, Anita Slavica, Andreas Taden, Daniel Mokos, Anna Schrüfer, Gregor Wirnsberger, Karl Gruber, Bastian Daniel*, Robert Kourist*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Enzymatic decarboxylation of biobased hydroxycinnamic acids gives access to phenolic styrenes for adhesive production. Phenolic acid decarboxylases are proficient enzymes that have been applied in aqueous systems, organic solvents, biphasic systems, and deep eutectic solvents, which makes stability a key feature. Stabilization of the enzyme would increase the total turnover number and thus reduce the energy consumption and waste accumulation associated with biocatalyst production. In this study, we used ancestral sequence reconstruction to generate thermostable decarboxylases. Investigation of a set of 16 ancestors resulted in the identification of a variant with an unfolding temperature of 78.1 °C and a half-life time of 45 h at 60 °C. Crystal structures were determined for three selected ancestors. Structural attributes were calculated to fit different regression models for predicting the thermal stability of variants that have not yet been experimentally explored. The models rely on hydrophobic clusters, salt bridges, hydrogen bonds, and surface properties and can identify more stable proteins out of a pool of candidates. Further stabilization was achieved by the application of mixtures of natural deep eutectic solvents and buffers. Our approach is a straightforward option for enhancing the industrial application of the decarboxylation process.

Originalspracheenglisch
Seiten (von - bis)3575-3584
Seitenumfang10
FachzeitschriftACS Sustainable Chemistry and Engineering
Jahrgang12
Ausgabenummer9
DOIs
PublikationsstatusVeröffentlicht - 4 März 2024

ASJC Scopus subject areas

  • Allgemeine Chemie
  • Umweltchemie
  • Allgemeine chemische Verfahrenstechnik
  • Erneuerbare Energien, Nachhaltigkeit und Umwelt

Fingerprint

Untersuchen Sie die Forschungsthemen von „Stability Increase of Phenolic Acid Decarboxylase by a Combination of Protein and Solvent Engineering Unlocks Applications at Elevated Temperatures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren