Trap-Assisted Memristive Switching in HfO2-Based Devices Studied by In Situ Soft and Hard X-Ray Photoelectron Spectroscopy

Finn Zahari*, Richard Marquardt, Matthias Kalläne, Ole Gronenberg, Christoph Schlueter, Yury Matveyev, Georg Haberfehlner, Florian Diekmann, Alena Nierhauve, Jens Buck, Arndt Hanff, Gitanjali Kolhatkar, Gerald Kothleitner, Lorenz Kienle, Martin Ziegler, Jürgen Carstensen, Kai Rossnagel, Hermann Kohlstedt*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Memristive devices are under intense development as non-volatile memory elements for extending the computing capabilities of traditional silicon technology by enabling novel computing primitives. In this respect, interface-based memristive devices are promising candidates to emulate synaptic functionalities in neuromorphic circuits aiming to replicate the information processing of nervous systems. A device composed of Nb/NbOx/Al2O3/HfO2/Au that shows promising features like analog switching, no electro-forming, and high current-voltage non-linearity is reported. Synchrotron-based X-ray photoelectron spectroscopy and depth-dependent hard X-ray photoelectron spectroscopy are used to probe in situ different resistance states and thus the origin of memristive switching. Spectroscopic evidence for memristive switching based on the charge state of electron traps within HfO2 is found. Electron energy loss spectroscopy and transmission electron microscopy support the analysis. A device model is proposed that considers a two-terminal metal–insulator–semiconductor structure in which traps within the insulator (HfO2/Al2O3) modulate the space charge region within the semiconductor (NbOx) and, thereby, the overall resistance. The experimental findings are in line with impedance spectroscopy data reported in the companion paper (Marquardt et al). Both works complement one another to derive a detailed device model, which helps to engineer device performance and integrate devices into silicon technology.

Originalspracheenglisch
Aufsatznummer2201226
FachzeitschriftAdvanced Electronic Materials
Jahrgang9
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - Juni 2023

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien

Fingerprint

Untersuchen Sie die Forschungsthemen von „Trap-Assisted Memristive Switching in HfO2-Based Devices Studied by In Situ Soft and Hard X-Ray Photoelectron Spectroscopy“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren