Characterization of Elements Involved in Allosteric Light Regulation of Phosphodiesterase Activity by Comparison of Different Functional BlrP1 States

Andreas Winkler*, Anikó Udvarhelyi, Elisabeth Hartmann, Jochen Reinstein, Andreas Menzel, Robert L. Shoeman, Ilme Schlichting*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Bacteria have evolved dedicated signaling mechanisms that enable the integration of a range of environmental stimuli and the accordant modulation of metabolic pathways. One central signaling molecule in bacteria is the second messenger cyclic dimeric GMP (c-di-GMP). Complex regulatory mechanisms for modulating c-di-GMP concentrations have evolved, in line with its importance for maintaining bacterial fitness under changing environmental conditions. One interesting example in this context is the blue-light-regulated phosphodiesterase 1 (BlrP1) of Klebsiella pneumoniae. This covalently linked system of a sensor of blue light using FAD (BLUF) and an EAL phosphodiesterase domain orchestrates the light-dependent down-regulation of c-di-GMP levels. To reveal details of light-induced structural changes involved in EAL activity regulation, we extended previous crystallographic studies with hydrogen–deuterium exchange experiments and small-angle X-ray scattering analysis of different functional BlrP1 states. The combination of hydrogen–deuterium exchange and small-angle X-ray scattering allows the integration of local and global structural changes and provides an improved understanding of light signaling via an allosteric communication pathway between the BLUF and EAL domains. This model is supported by results from a mutational analysis of the EAL dimerization region and the analysis of metal-coordination effects of the EAL active site on the dark-state recovery kinetics of the BLUF domain. In combination with structural information from other EAL domains, the observed bidirectional communication points to a general mechanism of EAL activity regulation and suggests that a similar allosteric coupling is maintained in catalytically inactive EAL domains that retain a regulatory function.
Original languageEnglish
Pages (from-to)853-868
JournalJournal of Molecular Biology
Issue number4
Publication statusPublished - 2014

Fields of Expertise

  • Human- & Biotechnology

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)


Dive into the research topics of 'Characterization of Elements Involved in Allosteric Light Regulation of Phosphodiesterase Activity by Comparison of Different Functional BlrP1 States'. Together they form a unique fingerprint.

Cite this