Projects per year
Abstract
Anion exchange membranes (AEMs) consisting of quaternary ammonium poly(vinyl alcohol) (QPVA) and poly(diallyldimethylammonium chloride) (PDDA) were prepared by a solution casting method. The influence of the concentration of the chemical crosslinker on the properties and performance of AEMs was investigated. Morphology, chemical structures, thermal and mechanical properties of AEMs were characterized by SEM, FTIR, TGA, and UTM. The performance of AEMs was evaluated by water uptake, swelling degree, ion exchange capacity, and OH- conductivity measurement. The tensile strength, water uptake, and OH- conductivity of AEMs were enhanced with the increase of the crosslinker concentration. By introducing 12.5% glutaraldehyde (GA), the QPVA/PDDA AEMs achieved the highest tensile strength, water uptake, and OH- conductivity of 46.21 MPa, 90.6% and 53.09 ms cm−1 at ambient condition, respectively. The investigations show that crosslinked QPVA/PDDA AEMs are a potential candidate for anion exchange membrane fuel cells.
Original language | English |
---|---|
Article number | 044526 |
Number of pages | 27 |
Journal | Journal of the Electrochemical Society |
Volume | 168 |
Issue number | 4 |
DOIs | |
Publication status | Published - 27 Apr 2021 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Materials Chemistry
- Surfaces, Coatings and Films
- Electrochemistry
- Renewable Energy, Sustainability and the Environment
Fields of Expertise
- Mobility & Production
Fingerprint
Dive into the research topics of 'Effect of Crosslinking on the Properties of QPVA/PDDA Anion Exchange Membranes for Fuel Cells Application'. Together they form a unique fingerprint.Projects
- 1 Finished
-
FWF – GODEFC - Graphene oxide based MEAs for the direct ethanol fuel cell
Hacker, V., Wolf, S., Roschger, M. & Samsudin, A. M.
1/01/19 → 30/06/22
Project: Research project