Effects of touchscreen media use on toddlers’ sleep: Insights from longtime ECG monitoring

Sigrid Hackl-Wimmer*, Marina Tanja Waltraud Eglmaier, Lars Eichen, Karoline Rettenbacher, Daniel Macher, Catherine Walter-Laager, Helmut Karl Lackner, Ilona Papousek, Manuela Paechter

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Wearable biomedical sensor technology enables reliable monitoring of physiological data, even in very young children. The purpose of the present study was to develop algorithms for gaining valid physiological indicators of sleep quality in toddlers, using data from an undisturbing and easy-to-use wearable device. The study further reports the application of this technique to the investigation of potential impacts of early touchscreen media use. Toddlers’ touchscreen media use is of strong interest for parents, educators, and researchers. Mostly, negative effects of media use are assumed, among them, disturbances of sleep and impairments of learning and development. In 55 toddlers (32 girls, 23 boys; 27.4 ± 4.9 months; range: 16–37 months), ECG monitoring was conducted for a period of 30 (±3) h. Parents were asked about their children’s touchscreen media use and they rated their children’s sleep quality. The use of touchscreen media predicted the physiologically determined quality of sleep but not parent-reported sleep quality (such as sleep onset latency). Greater heart rate differences between restless sleep phases and restful sleep indicated poorer nighttime recovery in children with more frequent use of touchscreen media. The study demonstrates that the expert analysis of the ECG during sleep is a potent tool for the estimation of sleep quality in toddlers.

Original languageEnglish
Article number7515
JournalSensors
Volume21
Issue number22
DOIs
Publication statusPublished - 1 Nov 2021

Keywords

  • 3D acceleration sensor
  • ECG derived respiration
  • Heart rate
  • Heart rate variability
  • Restless sleep
  • Sleep latency
  • Wearable biomedical sensing

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Cite this