Impact of Rim Orientation on Road Vehicles Aerodynamics Simulations

Research output: Contribution to journalConference articlepeer-review

Abstract

Aerodynamic CFD simulations in the automotive industry, which are based on the steady-state RANS (Reynolds-averaged Navier-Stokes) approach typically utilize approximate numerical methods to account for rotating wheels. In these methods, the computational mesh representing the rim geometry remains stationary, and the influence of the wheel rotation on the air flow is modelled. As the rims are considered only in one fixed rotational position (chosen arbitrarily in most cases), the effects of the rim orientation on the aerodynamic simulation results are disregarded and remain unquantified.
This paper presents a numerical sensitivity study to examine the impact of the rim orientation position on the aerodynamic parameters of a detailed production vehicle. The simulations are based on the steady-state RANS approach. These investigations are carried out for three rim geometries, and for simulation cases with stationary and rotating wheels for comparison, where the Moving Wall (MW) and the Moving Reference Frame (MRF) methods [1, 2], as well as combinations of the two approaches are used to model the wheel rotation.
For the test vehicle, alterations in the flow field, and subsequently an influence on the development of the aerodynamic vehicle drag could be detected, which results in a significant effect on the integral vehicle drag. These results demonstrate that the rim orientation position is an important parameter for vehicle aerodynamics simulation.
Original languageEnglish
Number of pages12
JournalSAE Technical Papers
Volume2020
Issue number2020-01-0674
DOIs
Publication statusPublished - 14 Apr 2020

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering
  • Automotive Engineering

Fields of Expertise

  • Mobility & Production

Fingerprint

Dive into the research topics of 'Impact of Rim Orientation on Road Vehicles Aerodynamics Simulations'. Together they form a unique fingerprint.

Cite this