TY - JOUR
T1 - Periventricular magnetisation transfer abnormalities in early multiple sclerosis
AU - Pirpamer, Lukas
AU - Kincses, Bálint
AU - Kincses, Zsigmond Tamás
AU - Kiss, Christian
AU - Damulina, Anna
AU - Khalil, Michael
AU - Stollberger, Rudolf
AU - Schmidt, Reinhold
AU - Enzinger, Christian
AU - Ropele, Stefan
N1 - Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
PY - 2022
Y1 - 2022
N2 - OBJECTIVE: Recent studies suggested that CSF-mediated factors contribute to periventricular (PV) T2-hyperintense lesion formation in multiple sclerosis (MS) and this in turn correlates with cortical damage. We thus investigated if such PV-changes are observable microstructurally in early-MS and if they correlate with cortical damage.METHODS: We assessed the magnetisation transfer ratio (MTR) in PV normal-appearing white matter (NAWM) and in MS lesions in 44 patients with a clinically isolated syndrome (CIS) suggestive of MS and 73 relapsing-remitting MS (RRMS) patients. Band-wise MTR values were related to cortical mean thickness (CMT) and compared with 49 healthy controls (HCs). For each band, MTR changes were assessed relative to the average MTR values of all HCs.RESULTS: Relative to HCs, PV-MTR was significantly reduced up to 2.63% in CIS and 5.37% in RRMS (p < 0.0001). The MTR decreased towards the lateral ventricles with 0.18%/mm in CIS and 0.31%/mm in RRMS patients, relative to HCs. In RRMS, MTR-values adjacent to the ventricle and in PV-lesions correlated positively with CMT and negatively with EDSS.CONCLUSION: PV-MTR gradients are present from the earliest stage of MS, consistent with more pronounced microstructural WM-damage closer to the ventricles. The positive association between reduced CMT and lower MTR in PV-NAWM suggests a common pathophysiologic mechanism. Together, these findings indicate the potential use of multimodal MRI as refined marker for MS-related tissue changes.
AB - OBJECTIVE: Recent studies suggested that CSF-mediated factors contribute to periventricular (PV) T2-hyperintense lesion formation in multiple sclerosis (MS) and this in turn correlates with cortical damage. We thus investigated if such PV-changes are observable microstructurally in early-MS and if they correlate with cortical damage.METHODS: We assessed the magnetisation transfer ratio (MTR) in PV normal-appearing white matter (NAWM) and in MS lesions in 44 patients with a clinically isolated syndrome (CIS) suggestive of MS and 73 relapsing-remitting MS (RRMS) patients. Band-wise MTR values were related to cortical mean thickness (CMT) and compared with 49 healthy controls (HCs). For each band, MTR changes were assessed relative to the average MTR values of all HCs.RESULTS: Relative to HCs, PV-MTR was significantly reduced up to 2.63% in CIS and 5.37% in RRMS (p < 0.0001). The MTR decreased towards the lateral ventricles with 0.18%/mm in CIS and 0.31%/mm in RRMS patients, relative to HCs. In RRMS, MTR-values adjacent to the ventricle and in PV-lesions correlated positively with CMT and negatively with EDSS.CONCLUSION: PV-MTR gradients are present from the earliest stage of MS, consistent with more pronounced microstructural WM-damage closer to the ventricles. The positive association between reduced CMT and lower MTR in PV-NAWM suggests a common pathophysiologic mechanism. Together, these findings indicate the potential use of multimodal MRI as refined marker for MS-related tissue changes.
KW - Brain
KW - Cerebral Ventricles/pathology
KW - Demyelinating Diseases/pathology
KW - Humans
KW - Magnetic Resonance Imaging
KW - Multiple Sclerosis/diagnostic imaging
KW - Multiple Sclerosis, Relapsing-Remitting/pathology
KW - White Matter/pathology
U2 - 10.1016/j.nicl.2022.103012
DO - 10.1016/j.nicl.2022.103012
M3 - Article
C2 - 35487133
SN - 2213-1582
VL - 34
JO - NeuroImage: Clinical
JF - NeuroImage: Clinical
M1 - 103012
ER -