Abstract
β-Carotene is one of the most important fat soluble pigments with well-known antioxidant and pro-vitamin A activity. It is used in industries as a food colorant and a source of vitamin A. The thermal induced degradation during processing of wide varieties of carotenoid-rich foods leads to color and properties losses. The thermal stability of edible oils is thus of great importance to food manufacturers. Corn oil, rapeseed, and sunflower oils were fortified with 50–300 μg/g of β-carotene and oxidized using a Rancimat apparatus (air flow rate 20 L/h) at 110 °C for 14 h. β-Carotene degradation was measured using high performance thin layer chromatography and confirmed by HPLC–DAD–MS. Triacylglycerols and polar compounds (PC) were determined using LC–ESI–MS. Results showed that most of the β-carotene was degraded during the first 5 h of the thermal oxidation. It was found that the addition of β-carotene produces significant effects (P < 0.05) on the peroxide index, free fatty acid values and radical scavenging activity of the three oils. Triacylglycerols containing high amounts of oleic acid show higher stability toward thermal oxidation and β-carotene treatment. Among the oils, rapeseed oil was the most stable oil in terms of the formation of polar compounds (PC), followed by corn oil, while sunflower oil was more prone to oxidation and thus higher amounts of PC were formed.
Original language | English |
---|---|
Pages (from-to) | 881-889 |
Journal | Journal of the American Oil Chemists' Society |
Volume | 90 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2013 |
Fields of Expertise
- Human- & Biotechnology
Treatment code (Nähere Zuordnung)
- Basic - Fundamental (Grundlagenforschung)