Wave functions, electronic localization, and bonding properties for correlated materials beyond the Kohn-Sham formalism

Alyn D.N. James*, Eddie I. Harris-Lee, Alexander Hampel, Markus Aichhorn, Stephen B. Dugdale

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Many-body theories such as dynamical mean field theory (DMFT) have enabled the description of the electron-electron correlation effects that are missing in current density functional theory (DFT) calculations. However, there has been relatively little focus on the wave functions from these theories. We present the methodology of the newly developed elk-triqs interface and how to calculate the DFT with DMFT (DFT+DMFT) wave functions, which can be used to calculate DFT+DMFT wave-function-dependent quantities. We illustrate this by calculating the electron localization function (ELF) in monolayer SrVO3 and CaFe2As2, which provides a means of visualizing their chemical bonds. Monolayer SrVO3 ELFs are sensitive to the charge redistribution between the DFT, one-shot DFT+DMFT, and fully charge self-consistent DFT+DMFT calculations. In both tetragonal and collapsed tetragonal CaFe2As2 phases, the ELF changes weakly with correlation-induced charge redistribution of the hybridized As p and Fe d states. Nonetheless, the interlayer As-As bond in the collapsed tetragonal structure is robust to the changes at and around the Fermi level.

Originalspracheenglisch
Aufsatznummer035106
FachzeitschriftPhysical Review B
Jahrgang103
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 6 Jan. 2021

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Physik der kondensierten Materie

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)
  • Theoretical

Kooperationen

  • NAWI Graz

Fingerprint

Untersuchen Sie die Forschungsthemen von „Wave functions, electronic localization, and bonding properties for correlated materials beyond the Kohn-Sham formalism“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren